Lorenz-Mie light scattering in cellular biology.
نویسنده
چکیده
The Lorenz-Mie light scattering is discussed as a tool allowing living cell characterization. The scattered light carries information about the size, shape, internal structure and refractive index of the cell. The advantages of light scattering methods consist in high speed, nondestructive, sensitive and relatively easy measurements. Light scattering methods are compatible with other methods. In light scattering in both static and flow systems. For sphere-like cells reliable size and refractive index information can be extracted. On the empirical basis, light scattering pattern can be used for the cell identification and separation purposes. The full utilization of the light scattering information is limited due to the lack of theoretical knowledge about the complex scatterer properties and efficient inversion schemes. The rapid progress in computer technique and in single-particle scattering experiments may significantly improve the interpretation of light scattering patterns of the biological particles.
منابع مشابه
A Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere
The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...
متن کاملAn unexpected signature of Lorenz-Mie scattering observed in FlowCytometric experiments
Detailed analysis of elastic light scattering by spheres in FlowCytometers shows unexpected Lorenz-Mie scattering patterns. The complete scattering matrix S of spheres was measured. Two parameter scatterplots with xand ycoordinates determined by the S11 + Sij and S11 Sij values were obtained. Samples of spheres with very narrow size distributions were analyzed and produced unexpected two parame...
متن کاملStrategies for three-dimensional particle tracking with holographic video microscopy.
The video stream captured by an in-line holographic microscope can be analyzed on a frame-by-frame basis to track individual colloidal particles' three-dimensional motions with nanometer resolution. In this work, we compare the performance of two complementary analysis techniques, one based on fitting to the exact Lorenz-Mie theory and the other based on phenomenological interpretation of the s...
متن کاملOn geometric optics and surface waves for light scattering by spheres
A geometric optics approach including surface wave contributions has been developed for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray tracing program was used for efficient computation of the extinction and absorption cross sections. The present geometric-optics surface-wave (GOS) theory for light scattering by spheres considers the surface wave contribution alon...
متن کاملResonance structures in elastic and Raman scattering from microspheres.
To study the interactions between Mie scattering and Raman emissions of spherical particles, we measured the Raman spectra together with the elastically scattered light of the excitation source of an evaporating aqueous sodium nitrate droplet. Resonance structures were observed in the temporal profiles of the elastically scattered light and Raman nitrate and water emissions. The resonance struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General physiology and biophysics
دوره 11 2 شماره
صفحات -
تاریخ انتشار 1992